The Hausdorff dimension of non-uniquely ergodic directions inH(2) is almost everywhere 1∕2
نویسندگان
چکیده
منابع مشابه
Criteria of Divergence Almost Everywhere in Ergodic Theory
In this expository paper, we survey nowadays classical tools or criteria used in problems of convergence everywhere to build counterexamples: the Stein continuity principle, Bourgain’s entropy criteria and Kakutani-Rochlin lemma, most classical device for these questions in ergodic theory. First, we state a L-version of the continuity principle and give an example of its usefulness by applying ...
متن کاملEvery Ergodic Measure Is Uniquely Maximizing
Let Mφ denote the set of Borel probability measures invariant under a topological action φ on a compact metrizable space X. For a continuous function f : X → R, a measure μ ∈ Mφ is called f -maximizing if ∫ f dμ = sup{ ∫ f dm : m ∈Mφ}. It is shown that if μ is any ergodic measure in Mφ, then there exists a continuous function whose unique maximizing measure is μ. More generally, if E is a non-e...
متن کاملIncentive Compatibility: Everywhere vs. Almost Everywhere∗
A risk neutral buyer observes a private signal s ∈ [a, b], which informs her that the mean and variance of a normally distributed risky asset are s and σ s respectively. She then sets a price at which to acquire the asset owned by risk averse “outsiders”. Assume σ s ∈ { 0, σ } for some σ > 0 and let B = { s ∈ [a, b] | σ s = 0 } . If B = ∅, then there exists a fully revealing equilibrium in whic...
متن کاملAlmost-Everywhere Secure Computation
Secure multi-party computation (MPC) is a central problem in cryptography. Unfortunately, it is well known that MPC is possible if and only if the underlying communication network has very large connectivity — in fact, , where is the number of potential corruptions in the network. This impossibility result renders existing MPC results far less applicable in practice, since many deployed network...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geometry & Topology
سال: 2015
ISSN: 1364-0380,1465-3060
DOI: 10.2140/gt.2015.19.3537